Limited-Stage SCLC Treatment

Limited-Stage SCLC Treatment



o    PCI
·         Current Clinical Trials

Standard Treatment Options for Patients With Limited-Stage SCLC

Standard treatment options for patients with limited-stage small-cell lung cancer (SCLC) include the following:
  1. Chemotherapy and radiation therapy.
  2. Combination chemotherapy alone.
  3. Surgery followed by chemotherapy or chemoradiation therapy.
  4. Prophylactic cranial irradiation (PCI).

Chemotherapy and radiation therapy

Combined-modality treatment with etoposide and cisplatin with thoracic radiation therapy (TRT) is the most widely used treatment for patients with limited-stage disease (LD) SCLC.
Evidence (combined modality treatment):
  1. Survival. The following results have been reported in clinical trials:
    1. Mature results of prospective randomized trials suggest that combined-modality therapy produces a modest but significant improvement in survival of 5% at 3 years compared with chemotherapy alone.[1-3][Level of evidence: 1iiA]
    2. Clinical trials have consistently achieved median survivals of 18 to 24 months and 40% to 50% 2-year survival rates with less than a 3% treatment-related mortality.[3-7][Level of evidence: 1iiA]
    3. No consistent survival benefit has resulted from the following:[8-16]
§  Increased dose intensity.
§  Increased dose density.
§  Administration of additional drugs or other (non–etoposide-containing) platinum-based combination regimens.
§  Altered modes of administration of various chemotherapeutic agents.
§  Maintenance chemotherapy.
  1. Length of treatment. The optimal duration of chemotherapy for patients with LD SCLC is not clearly defined, but no improvement exists in survival after the duration of drug administration exceeds 3 to 6 months. The preponderance of evidence available from randomized trials indicates that maintenance chemotherapy does not prolong survival for patients with LD SCLC.[8-15][Level of evidence: 1iiA]
  2. Dose and timing. The optimal dose and timing of TRT remain controversial.
    1. Multiple clinical trials and meta-analyses addressing the timing of TRT have been published, with the weight of evidence suggesting a small benefit to early TRT (i.e., TRT administered during the first or second cycle of chemotherapy administration).[3-6,8,9,15,17-20][Level of evidence: 1iiA]
    2. The amount of time from start to completion of TRT in LD SCLC may also effect overall survival (OS). In an analysis of four trials, the completion of therapy in less than 30 days was associated with an improved 5-year survival rate (relative risk, 0.62; 95% confidence interval, 0.49–0.80; P = .0003).[20][Level of evidence: 1iiA]
    3. Both once-daily and twice-daily chest radiation schedules have been used in regimens with etoposide and cisplatin. One randomized study showed a modest survival advantage in favor of twice-daily radiation therapy given for 3 weeks compared with once-daily radiation therapy to 45 Gy given for 5 weeks (26% vs. 16% at 5 years; P = .04).[17][Level of evidence: 1iiA] Esophagitis was increased with twice-daily treatment. Twice-daily radiation therapy has not been broadly adopted. Once-daily fractions to higher doses of greater than 60 Gy are feasible and commonly used; their clinical benefits are yet to be defined in phase III trials.[21-25][Level of evidence: 3iiiA]

Combination chemotherapy alone

Patients with a contraindication to radiation therapy could be treated with chemotherapy alone. Patients presenting with superior vena cava syndrome are treated immediately with combination chemotherapy, radiation therapy, or both, depending on the severity of presentation.[26,27] (Refer to the PDQ summary on Cardiopulmonary Syndromes for more information.)

Surgery followed by chemotherapy or chemoradiation therapy

The role of surgery in the management of patients with SCLC is unproven. Small case series and population studies have reported favorable outcomes for the minority of LD patients with very limited disease, with small tumors pathologically confined to the lung of origin or the lung and ipsilateral hilar lymph nodes from surgical resection with adjuvant chemotherapy.[28-32][Level of evidence: 3iiiDii] Patients who have undergone surgery and then been diagnosed with SCLC generally receive adjuvant chemotherapy with or without radiation therapy. In patients who receive chemotherapy with radiation therapy, there is no improvement in survival with the addition of surgery.[32][Level of evidence: 3iiiDii] Given the absence of data from randomized trials, the role of surgery in the management of individual patients with SCLC must be considered, both in terms of potential benefit and risk from the surgical procedure.
Evidence (role of surgery):
  1. A randomized study evaluating the role of surgery in addition to chemoradiation therapy enrolled 328 patients with LD SCLC and found no OS benefit with the addition of pulmonary resection.[33][Level of evidence: 1iiA]

PCI

Patients who have achieved a complete remission can be considered for administration of PCI. Patients whose cancer can be controlled outside the brain have a 60% actuarial risk of developing central nervous system (CNS) metastases within 2 to 3 years after starting treatment.[32,34,35] The majority of these patients relapse only in their brain, and nearly all of those who relapse in their CNS die of their cranial metastases. The risk of developing CNS metastases can be reduced by more than 50% by the administration of PCI.[34]
Evidence (role of PCI):
  1. A meta-analysis of seven randomized trials evaluating the value of PCI in patients in complete remission reported improvement in brain recurrence, disease-free survival, and OS with the addition of PCI. The 3-year OS was improved from 15% to 21% with PCI.[34][Level of evidence: 1iiA
  2. A randomized study (RTOG-0212) of 720 patients with LD SCLC in complete remission after chemoradiation therapy demonstrated that standard-dose PCI (25 Gy in 10 fractions) was as effective as and less toxic than higher doses of brain radiation.[36]
  3. Randomized trials such as EORTC-22003-08004 (NCT00005062) showed that doses higher than 25 Gy in 10 daily fractions do not improve long-term survival.[36-38]

Neurologic sequelae

Retrospective studies have shown that long-term survivors of SCLC (>2 years from the start of treatment) have a high incidence of CNS impairment.[32,35,39-41] Prospective studies have shown that patients treated with PCI do not have significantly worse neuropsychological function than patients not treated.[41] The majority of patients with SCLC have neuropsychological abnormalities present before the start of PCI and have no detectable decline in their neurological status for as long as 2 years after the start of their PCI.[41] Patients treated for SCLC continue to have declining neuropsychologic function after 2 years from the start of treatment.[39-41] Additional neuropsychologic testing of patients beyond 2 years from the start of treatment will be needed before concluding that PCI does not contribute to the decline in intellectual function.

Treatment options for older patients

The optimal therapeutic approach in older patients remains unclear. A population analysis showed that increasing age was associated with a decreased performance status and increased comorbidity.[42] Older patients were less likely to be treated with combined chemoradiation therapy, more intensive chemotherapy, and PCI. Older patients were also less likely to respond to therapy and had poorer survival outcomes. Whether this was a result of age and its associated comorbidities or suboptimal treatment delivery remains uncertain.
No specific phase III trial in older patients with LD SCLC has been reported; however, three secondary analyses of two cooperative group trials have been published evaluating outcomes in patients aged 70 years or older.[43-45] The survival outcomes for the older patients were identical to their younger counterparts in both trials. The older patients experienced more toxic effects, particularly hematologic, compared with younger patients. There was a significant increase in treatment-related mortality in theEST-3588 trial that compared etoposide and cisplatin with either once-daily or twice-daily radiation therapy (1% for patients aged <70 years vs. 10% for patients aged 70 years; P = .01).[44] Because the older patients enrolled in these phase III trials may not be representative of LD SCLC patients in the general population, caution must be exercised in extrapolating these results to the general population of older patients.

Treatment Options Under Clinical Evaluation

Treatment options under clinical evaluation for patients with LD SCLC include the following:
·         New drug regimens.
·         Surgical resection of the primary tumor.
·         New radiation therapy schedules and techniques (e.g., timing, three-dimensional treatment planning, and dose fractionation).

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients withlimited stage small cell lung cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.
General information about clinical trials is also available from the NCI Web site.

References

  1. Pignon JP, Arriagada R, Ihde DC, et al.: A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327 (23): 1618-24, 1992. [PUBMED Abstract]
  2. Warde P, Payne D: Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10 (6): 890-5, 1992. [PUBMED Abstract]
  3. Murray N, Coy P, Pater JL, et al.: Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 11 (2): 336-44, 1993. [PUBMED Abstract]
  4. Turrisi AT 3rd, Glover DJ: Thoracic radiotherapy variables: influence on local control in small cell lung cancer limited disease. Int J Radiat Oncol Biol Phys 19 (6): 1473-9, 1990. [PUBMED Abstract]
  5. McCracken JD, Janaki LM, Crowley JJ, et al.: Concurrent chemotherapy/radiotherapy for limited small-cell lung carcinoma: a Southwest Oncology Group Study. J Clin Oncol 8 (5): 892-8, 1990. [PUBMED Abstract]
  6. Takada M, Fukuoka M, Kawahara M, et al.: Phase III study of concurrent versus sequential thoracic radiotherapy in combination with cisplatin and etoposide for limited-stage small-cell lung cancer: results of the Japan Clinical Oncology Group Study 9104. J Clin Oncol 20 (14): 3054-60, 2002. [PUBMED Abstract]
  7. Johnson BE, Bridges JD, Sobczeck M, et al.: Patients with limited-stage small-cell lung cancer treated with concurrent twice-daily chest radiotherapy and etoposide/cisplatin followed by cyclophosphamide, doxorubicin, and vincristine. J Clin Oncol 14 (3): 806-13, 1996. [PUBMED Abstract]
  8. Spiro SG, James LE, Rudd RM, et al.: Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London Lung Cancer Group multicenter randomized clinical trial and meta-analysis. J Clin Oncol 24 (24): 3823-30, 2006. [PUBMED Abstract]
  9. De Ruysscher D, Pijls-Johannesma M, Vansteenkiste J, et al.: Systematic review and meta-analysis of randomised, controlled trials of the timing of chest radiotherapy in patients with limited-stage, small-cell lung cancer. Ann Oncol 17 (4): 543-52, 2006. [PUBMED Abstract]
  10. Giaccone G, Dalesio O, McVie GJ, et al.: Maintenance chemotherapy in small-cell lung cancer: long-term results of a randomized trial. European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J Clin Oncol 11 (7): 1230-40, 1993. [PUBMED Abstract]
  11. Goodman GE, Crowley JJ, Blasko JC, et al.: Treatment of limited small-cell lung cancer with etoposide and cisplatin alternating with vincristine, doxorubicin, and cyclophosphamide versus concurrent etoposide, vincristine, doxorubicin, and cyclophosphamide and chest radiotherapy: a Southwest Oncology Group Study. J Clin Oncol 8 (1): 39-47, 1990. [PUBMED Abstract]
  12. Fukuoka M, Furuse K, Saijo N, et al.: Randomized trial of cyclophosphamide, doxorubicin, and vincristine versus cisplatin and etoposide versus alternation of these regimens in small-cell lung cancer. J Natl Cancer Inst 83 (12): 855-61, 1991. [PUBMED Abstract]
  13. Bleehen NM, Girling DJ, Machin D, et al.: A randomised trial of three or six courses of etoposide cyclophosphamide methotrexate and vincristine or six courses of etoposide and ifosfamide in small cell lung cancer (SCLC). I: Survival and prognostic factors. Medical Research Council Lung Cancer Working Party. Br J Cancer 68 (6): 1150-6, 1993. [PUBMED Abstract]
  14. Sculier JP, Paesmans M, Bureau G, et al.: Randomized trial comparing induction chemotherapy versus induction chemotherapy followed by maintenance chemotherapy in small-cell lung cancer. European Lung Cancer Working Party. J Clin Oncol 14 (8): 2337-44, 1996. [PUBMED Abstract]
  15. Fried DB, Morris DE, Poole C, et al.: Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. J Clin Oncol 22 (23): 4837-45, 2004. [PUBMED Abstract]
  16. Kubota K, Hida T, Ishikura S, et al.: Etoposide and cisplatin versus irinotecan and cisplatin in patients with limited-stage small-cell lung cancer treated with etoposide and cisplatin plus concurrent accelerated hyperfractionated thoracic radiotherapy (JCOG0202): a randomised phase 3 study. Lancet Oncol 15 (1): 106-13, 2014. [PUBMED Abstract]
  17. Turrisi AT 3rd, Kim K, Blum R, et al.: Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340 (4): 265-71, 1999. [PUBMED Abstract]
  18. Huncharek M, McGarry R: A meta-analysis of the timing of chest irradiation in the combined modality treatment of limited-stage small cell lung cancer. Oncologist 9 (6): 665-72, 2004. [PUBMED Abstract]
  19. Pijls-Johannesma MC, De Ruysscher D, Lambin P, et al.: Early versus late chest radiotherapy for limited stage small cell lung cancer. Cochrane Database Syst Rev (1): CD004700, 2005. [PUBMED Abstract]
  20. De Ruysscher D, Pijls-Johannesma M, Bentzen SM, et al.: Time between the first day of chemotherapy and the last day of chest radiation is the most important predictor of survival in limited-disease small-cell lung cancer. J Clin Oncol 24 (7): 1057-63, 2006. [PUBMED Abstract]
  21. Bogart JA, Herndon JE 2nd, Lyss AP, et al.: 70 Gy thoracic radiotherapy is feasible concurrent with chemotherapy for limited-stage small-cell lung cancer: analysis of Cancer and Leukemia Group B study 39808. Int J Radiat Oncol Biol Phys 59 (2): 460-8, 2004. [PUBMED Abstract]
  22. Salama JK, Hodgson L, Pang H, et al.: A pooled analysis of limited-stage small-cell lung cancer patients treated with induction chemotherapy followed by concurrent platinum-based chemotherapy and 70 Gy daily radiotherapy: CALGB 30904. J Thorac Oncol 8 (8): 1043-9, 2013. [PUBMED Abstract]
  23. Choi NC, Herndon JE 2nd, Rosenman J, et al.: Phase I study to determine the maximum-tolerated dose of radiation in standard daily and hyperfractionated-accelerated twice-daily radiation schedules with concurrent chemotherapy for limited-stage small-cell lung cancer. J Clin Oncol 16 (11): 3528-36, 1998. [PUBMED Abstract]
  24. Miller AA, Wang XF, Bogart JA, et al.: Phase II trial of paclitaxel-topotecan-etoposide followed by consolidation chemoradiotherapy for limited-stage small cell lung cancer: CALGB 30002. J Thorac Oncol 2 (7): 645-51, 2007. [PUBMED Abstract]
  25. Kelley MJ, Bogart JA, Hodgson LD, et al.: Phase II study of induction cisplatin and irinotecan followed by concurrent carboplatin, etoposide, and thoracic radiotherapy for limited-stage small-cell lung cancer, CALGB 30206. J Thorac Oncol 8 (1): 102-8, 2013. [PUBMED Abstract]
  26. Urban T, Lebeau B, Chastang C, et al.: Superior vena cava syndrome in small-cell lung cancer. Arch Intern Med 153 (3): 384-7, 1993. [PUBMED Abstract]
  27. Würschmidt F, Bünemann H, Heilmann HP: Small cell lung cancer with and without superior vena cava syndrome: a multivariate analysis of prognostic factors in 408 cases. Int J Radiat Oncol Biol Phys 33 (1): 77-82, 1995. [PUBMED Abstract]
  28. Osterlind K, Hansen M, Hansen HH, et al.: Treatment policy of surgery in small cell carcinoma of the lung: retrospective analysis of a series of 874 consecutive patients. Thorax 40 (4): 272-7, 1985. [PUBMED Abstract]
  29. Shepherd FA, Ginsberg RJ, Patterson GA, et al.: A prospective study of adjuvant surgical resection after chemotherapy for limited small cell lung cancer. A University of Toronto Lung Oncology Group study. J Thorac Cardiovasc Surg 97 (2): 177-86, 1989. [PUBMED Abstract]
  30. Prasad US, Naylor AR, Walker WS, et al.: Long term survival after pulmonary resection for small cell carcinoma of the lung. Thorax 44 (10): 784-7, 1989. [PUBMED Abstract]
  31. Smit EF, Groen HJ, Timens W, et al.: Surgical resection for small cell carcinoma of the lung: a retrospective study. Thorax 49 (1): 20-2, 1994. [PUBMED Abstract]
  32. Chandra V, Allen MS, Nichols FC 3rd, et al.: The role of pulmonary resection in small cell lung cancer. Mayo Clin Proc 81 (5): 619-24, 2006. [PUBMED Abstract]
  33. Lad T, Piantadosi S, Thomas P, et al.: A prospective randomized trial to determine the benefit of surgical resection of residual disease following response of small cell lung cancer to combination chemotherapy. Chest 106 (6 Suppl): 320S-323S, 1994. [PUBMED Abstract]
  34. Nugent JL, Bunn PA Jr, Matthews MJ, et al.: CNS metastases in small cell bronchogenic carcinoma: increasing frequency and changing pattern with lengthening survival. Cancer 44 (5): 1885-93, 1979. [PUBMED Abstract]
  35. Aupérin A, Arriagada R, Pignon JP, et al.: Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 341 (7): 476-84, 1999. [PUBMED Abstract]
  36. Le Péchoux C, Dunant A, Senan S, et al.: Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): a randomised clinical trial. Lancet Oncol 10 (5): 467-74, 2009. [PUBMED Abstract]
  37. Le Péchoux C, Laplanche A, Faivre-Finn C, et al.: Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Ann Oncol 22 (5): 1154-63, 2011. [PUBMED Abstract]
  38. Wolfson AH, Bae K, Komaki R, et al.: Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. Int J Radiat Oncol Biol Phys 81 (1): 77-84, 2011. [PUBMED Abstract]
  39. Johnson BE, Patronas N, Hayes W, et al.: Neurologic, computed cranial tomographic, and magnetic resonance imaging abnormalities in patients with small-cell lung cancer: further follow-up of 6- to 13-year survivors. J Clin Oncol 8 (1): 48-56, 1990. [PUBMED Abstract]
  40. Laukkanen E, Klonoff H, Allan B, et al.: The role of prophylactic brain irradiation in limited stage small cell lung cancer: clinical, neuropsychologic, and CT sequelae. Int J Radiat Oncol Biol Phys 14 (6): 1109-17, 1988. [PUBMED Abstract]
  41. Cull A, Gregor A, Hopwood P, et al.: Neurological and cognitive impairment in long-term survivors of small cell lung cancer. Eur J Cancer 30A (8): 1067-74, 1994. [PUBMED Abstract]
  42. Ludbrook JJ, Truong PT, MacNeil MV, et al.: Do age and comorbidity impact treatment allocation and outcomes in limited stage small-cell lung cancer? a community-based population analysis. Int J Radiat Oncol Biol Phys 55 (5): 1321-30, 2003. [PUBMED Abstract]
  43. Schild SE, Stella PJ, Geyer SM, et al.: The outcome of combined-modality therapy for stage III non-small-cell lung cancer in the elderly. J Clin Oncol 21 (17): 3201-6, 2003. [PUBMED Abstract]
  44. Yuen AR, Zou G, Turrisi AT, et al.: Similar outcome of elderly patients in intergroup trial 0096: Cisplatin, etoposide, and thoracic radiotherapy administered once or twice daily in limited stage small cell lung carcinoma. Cancer 89 (9): 1953-60, 2000. [PUBMED Abstract]
  45. Siu LL, Shepherd FA, Murray N, et al.: Influence of age on the treatment of limited-stage small-cell lung cancer. J Clin Oncol 14 (3): 821-8, 1996. [PUBMED Abstract]

No comments:

Post a Comment

Please leave your comments